Neuromodulation

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second messenger signaling cascade that induces a broad, long-lasting signal. This modulation can last for hundreds of milliseconds to several minutes. Some of the effects of neuromodulators include: altering intrinsic firing activity,[1] increasing or decreasing voltage-dependent currents,[2] altering synaptic efficacy, increasing bursting activity[2] and reconfigurating synaptic connectivity.[3]

Major neuromodulators in the central nervous system include: dopamine, serotonin, acetylcholine, histamine, norepinephrine, nitric oxide, and several neuropeptides. Cannabinoids can also be powerful CNS neuromodulators.[4][5][6] Neuromodulators can be packaged into vesicles and released by neurons, secreted as hormones and delivered through the circulatory system.[7] A neuromodulator can be conceptualized as a neurotransmitter that is not reabsorbed by the pre-synaptic neuron or broken down into a metabolite. Some neuromodulators end up spending a significant amount of time in the cerebrospinal fluid (CSF), influencing (or "modulating") the activity of several other neurons in the brain.[8]

  1. ^ DeRiemer, S. A.; Strong, J. A.; Albert, K. A.; Greengard, P.; Kaczmarek, L. K. (24–30 January 1985). "Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C". Nature. 313 (6000): 313–316. Bibcode:1985Natur.313..313D. doi:10.1038/313313a0. ISSN 0028-0836. PMID 2578617. S2CID 4230710.
  2. ^ a b Harris-Warrick, R. M.; Flamm, R. E. (July 1987). "Multiple mechanisms of bursting in a conditional bursting neuron". The Journal of Neuroscience. 7 (7): 2113–2128. doi:10.1523/JNEUROSCI.07-07-02113.1987. ISSN 0270-6474. PMC 6568948. PMID 3112322.
  3. ^ Klein, M; Kandel, E R (November 1980). "Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia". Proceedings of the National Academy of Sciences of the United States of America. 77 (11): 6912–6916. Bibcode:1980PNAS...77.6912K. doi:10.1073/pnas.77.11.6912. ISSN 0027-8424. PMC 350401. PMID 6256770.
  4. ^ Fortin DA, Levine ES (2007). "Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons". Cerebral Cortex. 17 (1): 163–74. doi:10.1093/cercor/bhj133. PMID 16467564.
  5. ^ Good CH (2007). "Endocannabinoid-dependent regulation of feedforward inhibition in cerebellar Purkinje cells". Journal of Neuroscience. 27 (1): 1–3. doi:10.1523/JNEUROSCI.4842-06.2007. PMC 6672293. PMID 17205618.
  6. ^ Hashimotodani Y, Ohno-Shosaku T, Kano M (2007). "Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus". Journal of Neuroscience. 27 (5): 1211–9. doi:10.1523/JNEUROSCI.4159-06.2007. PMC 6673197. PMID 17267577.
  7. ^ Marder, Eve (4 October 2012). "Neuromodulation of Neuronal Circuits: Back to the Future". Neuron. 76 (1): 1–11. doi:10.1016/j.neuron.2012.09.010. ISSN 0896-6273. PMC 3482119. PMID 23040802.
  8. ^ Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J. (1992). "Exercise and neuromodulators: Choline and acetylcholine in marathon runners". International Journal of Sports Medicine. 13 (Suppl 1): S141–2. doi:10.1055/s-2007-1024619. PMID 1483754. S2CID 36276472. [verification needed]

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search